

Questions

- What is an "Environmentally Friendly" product?
- What is a "Green process"
- What is "Sustainable Development"?

Further Questions

- How far do we look?
- Raw material extraction
- Manufacturing
- Use
- Disposal (end of life)
- Energy consumption?
- Material consumption?
- Emission?

Life Cycle Management (LCM) Life Cycle Assessment (LCA)

- Life Cycle Management is an integrated concept for managing the total life cycle of goods and services towards more sustainable production and consumption
- Life Cycle Assessment is a tool for the systematic evaluation of the environmental aspects of a product or service system through all stages of its life cycle

Brief History of LCA

- 1963: World Energy Conference.
- 1969: Coca-Cola performed a study to compare beverage containers
- Early 70's: standard protocols being developed Resource and Environmental Profile Analysis (REPA) 1975-early 80's: slow development because of fading threat of oil crisis, Liquid Food Container Directive in 1985 by EC
- 1988: solid waste became global issue, re-surge of LCA
- 1991: concern over inappropriate use of LCA for marketing, lead to development of ISO14040 as a standard approach
- 2002: United Nations Environment Programme (UNEP) and Society of Environmental Toxicology and Chemistry (SETAC) launched the Life Cycle Initiative

The Phases of Life Cycle Assessment

Goal and Scope Definition

- Define and describe the product, process or activity. Establish the context in which the assessment is to be made and identify the boundaries and environmental effects to be reviewed for the assessment.
- Functional unit
- Defining system boundary

Inventory Analysis

Identify and quantify energy, water and materials usage and environmental releases (e.g., air emissions, solid waste disposal, waste water discharges).

Sources of data

- Meter readings from equipment
- Equipment operating logs/journals
- Industry data reports, databases, or consultants
- Laboratory test results
- Government documents, reports, databases,
- Other publicly available databases or clearinghouses
- Journals, papers, books, and patents
- Reference books
- Trade associations
- Related/previous life cycle inventory studies
 Equipment and process specifications
- Equipment and process specifica
- Best engineering judgment.

Impact Assessment

- Assess the potential human and ecological effects of energy, water, and material usage and the environmental releases identified in the inventory analysis.
- Impact categories
- Characterisation
- weighting

	Category	Scale	Examples of LC1 Data (i.e. classification)	Common Possible Characterization Factor	Description of Characterization Factor
	Global Warming	Global	Carbon Dioxide (CO2) Nitrogen Dioxide (NO2) Methane (CH4) Chlorofluorocarbons (CPCs) Hydrochkorofluorocarbons (HCPCa) Methyl Bromide (CH4Br)	Global Warming Potential	Converts LCI data to carbon dioxide (CO ₂) equivalents Note: global warming potentials can be 50, 100, or 500 year potentials.
	Stratospheric Ozone Depletion	Global	Chlorofluorocarbons (CFCs) Hydrochlorofluorocarbons (HCFCs) Halons Methyl Bromide (CH.Br)	Ozone Depleting Potential	Converts LCI data to trichlorofluoromethane (CFC-11) equivalents.
	Acidification	Regional Local	Sulfur Oxides (SOx) Nitrogen Oxides (NOx) Hydrochloric Acid (HCL) Hydroflouric Acid (HF) Armonia (NH4)	Acidification Potential	Converts LCI data to hydrogen (H+) ion equivalents.
	Eutrophication	Local	Phosphate (PO ₄) Nitrogen Oxide (NO) Nitrogen Dixxide (NO ₂) Nitratea Ammonia (NH ₄)	Eutrophication Potential	Converts LCI data to phosphate (PO4) equivalents.
	Photochemical Senog	Local	Non-methane hydrocarbon (NMHC)	Photochemical Oxident Creation Potential	Converts LCI data to ethane (C ₂ H _c) equivalents.
	Terrestrial Texicity	Local	Toxic chemicals with a reported lethal concentration to rodents	LC ₅₀	Converts LC ₅₈ data to equivalents; uses multi- media modeling, exposure pathways.
	Aquatic Toxicity	Local	Toxic chemicals with a reported lethal concentration to fish	LC30	Converts LC ₅₀ data to equivalents; uses multi- media modeling, exposure pathways.
/	Human Health	Global Regional Local	Total releases to air, water, and soil.	LC ₁₀	Converts LC ₃₀ data to equivalents; uses multi- media modeling, exposure nathways.
1	Resource Depletion	Global Regional Local	Quantity of minerals used Quantity of fossil faels used	Resource Depletion Potential	Converts LCI data to a ratio of quantity of resource used versus quantity of resource left in reserve.
	Land Use	Global Regional Local	Quantity disposed of in a landfill or other land modifications	Land Availability	Converts mass of solid waste into volume using an estimated density.
	Water Use	Regional Local	Water used or consumed	Water Shortage Potential	Converts LCI data to a ratio of quantity of water used versus cauntity of resource loft

Characterization of Global Warming Impacts

The following calculations demonstrate how characterization factors can be used to estimate the global warming potential (GWP) of defined quantities of greenhouse gases:

Chloroform GWP Factor Value* = 9, Quantity = 20 kgMethane GWP Factor Value* = 21, Quantity = 10 kg

Chloroform GWP Impact = 20 kg x 9 = 180 kg CO2 equivalents

Methane GWP Impact = 10 kg x 21 = 210 kg CO2 equivalents

*Intergovernmental Panel on Climate Change (IPCC) Model

Examples of LCI and LCA Software

- Ecoinvent by Swiss Centre for Life Cycle Inventories
- GaBi by PE Europe GmbH and IKP University of Stuttgart
- SimaPro by PRé Consultants
- US LCI Data National Renewable Energy Lab

Interpretation

 Evaluate the results of the inventory analysis and impact assessment to select the preferred product, process or service with a clear understanding of the uncertainty and the assumptions used to generate the results.

Environmental in	npact categories	Unit
Global warming		kg CO2-equivalents
Acidification		kg SO2-equivalents
Eutrophication		kg PO4-equivalents
Smog formation		kg C ₂ H ₄ -equivalents
Solid waste gene	ration	kg
Oxygen depletior	า	kg COD

Environmental impact categories	Amount per functional unit	Unit
<u>Global warming</u>	7,47	kg CO ₂ -eq
Acidification	43.1	g SO ₂ -eq
Eutrophication	20.2	g PO ₄ -eq
Smog formation	5.64	g C ₂ H ₄ -eq
Solid waste generation	0.91	kg
Oxygen depletion	0.57	g COD
		<

Substance	Emission	Equivalency factor	Emission's potential
	Qi	er(gw); a COseed/a substance	EP(gw);
	9	g cog eq/g substance	g 002 84
CO2	509	1	509
CH4	21	11	231
N ₂ O	0.02	270	5.4
Other substances			1.6
EP(gw) per box			747
EP(gw) per funti	onal unit		7470

"The A380 has been designed in order to optimise environmental performance at each stage of the aircraft life cycle. In particular, the high passenger capacity with a 2-deck design and the use of new light weight materials has decreased the energy consumption per passenger dramatically. The A380 is expected to use less than 3 litres of fuel per 100 passengers kilometres."

Benefits of LCA

- Quantifies and pinpoints environmental impact for improvement
- Identifies the transfer of environmental impacts from one media to another and/or from one life cycle stage to another
- Helps decide on product/activity with least overall environmental impact
- Combines with cost and social factors to evaluate sustainability
- Eco-marketing

Improvement and Management

- Modify unit process with high impacts
- Modify product design
- Mitigation measures
- Compensation e.g. carbon offset

Limitations of LCA

- Resource demanding
- Availability, accuracy and applicability of data
- Does not imply sustainability
- No easy communication to the public (e.g. a single indicator, eco-labels)
- It is better to be roughly right than to be exactly wrong

