Radiation protection for PET/CT

Wu Po Man Senior Physicist Dept. of Clinical Oncology Queen Mary Hospital Stephen Kwok Senior Radiographer PET/CT center University of Hong Kong

Acknowledgement

- Dr P. L. Khong, PET/CT center, HKU
- Dr Martin Law, MPU/COD/QMH
- Dr Mark Madsen, Radiology, University of Iowa.
- Dr Jon Anderson, Radiology, University of Texas Medical Center at Dallas.
- Radiation Health Unit/ Department of Health / HKSAR

Motivation for Task Group 108

- Explosion of PET and PET/CT facilities since 2000.
- Conflicting advice from physicists and manufacturers.
- AAPM Leadership Role

Reference: AAPM Task Group 108: PET and PET/CT Shielding requirements. Med. Phys. 33(1), Jan2006 21/09/2007

Comparison of x-rays and Annihilation Radiation

- X-rays
- Limited duration
 - CT Scan Time (minutes per patient)
- Low energy
 - 60 100 keV
- Easily shielded
 - 1.5 mm of Pb yields
 1000 x dose reduction

- Annihilation Radiation
- Always "on"
 - Patient is main source
 - Clinic time > 1 hour/patient
- High energy
 - 511 keV
- Substantial shielding
 - 10 mm of Pb provides
 x 4 reduction

Courtesy of Dr Mark Madsen

Who (or what) needs protection?

- **PET Technologists and Nurses**
 - Radiation workers in the PET center
- Facility employees
 - Radiation workers (Non-PET)
 - Non-radiation workers
- General public
 - Relatives and associates of patients
- Radiation detection equipment
 - Probes, well counters, gamma cameras

What specific areas should be considered?

- Radionuclide storage & disposal
- Radiopharmaceutical administration
- Uptake room
- Tomograph room
 - Control room
- Patient bathroom
- Surrounding areas (especially uncontrolled areas with high occupancy factor).

FACTORS AFFECTING RADIATION PROTECTION

• Radionuclide

- Half life, emissions

• Procedure protocol

- Administered activity, uptake time, scan time

• Dose rate from the patient

 Dose constants, patient attenuation, decay, number of patients per week.

• Facility layout

- Controlled vs uncontrolled areas, occupancy factors, detection instrumentation
- Regulatory Limits

Positron (β+) **Decay**

PET Radionuclides

		Decay	Eβmax	Energy	
	$T_{1/2}$	Mode	(MeV)	(keV)	photons/decay
^{11}C	20.4 m	β+	0.96	511	2.00
^{13}N	10.0 m	β+	1.19	511 2.	00
¹⁵ O	2.0 m	β+	1.72	511	2.00
$^{18}\mathrm{F}$	109.8 m	β+ ,EC	0.63	511	1.93
⁸² Rb	76 s	β+, EC	3.35	511	1.90,
				776	0.13
⁶⁸ Ga	68.3 m	β+, EC	1.9	511	1.84
⁶⁴ Cu	12.7 h	β - , β+, EC	0.65	511	0.38
				1346	0.005
$^{124}\mathbf{I}$	4.2 d	β+, EC	1.54, 2.17	511 0.:	5
				603	0.62
21/09/2007				1693	0.3
		Courtesy of Dr Mark Madsen			

What types of studies should be considered?

- Myocardial Perfusion
 <u>– ⁸²Rb</u>, ¹³N-Amonia
- Neurological Studies
 - ¹⁵O-Water Cognitive Activation
 - Receptor imaging (¹⁸F-Fluorodopa)
- Oncologic Research
 - ¹¹C-Methionine, ¹¹C-Choline
- Clinical Onology
 - ¹⁸F-Fuorodeoxyglucose (FDG)

Oncologic Imaging with F-18 FDG

HO HO 18TC			Fludeoxyglucose F18 (¹⁸ F- FDG)				
	HO	Production	Half- life	Decay constant	Decay mode	Principle emissions (MeV)	γ ray constant (R- cm ² /mCi-hr)
	¹⁸ F	¹⁸ O(p,n) ¹⁸ F	109.8 min	0.0063 min ⁻¹	β⁺, EC	0.65 β ⁺ (97%) 0.511 γ(194%)	5.73

Mechanism of Action

 FDG is a glucose analog that competes with glucose for hexokinase phosphorylation to FDG-6-phosphate (FDG-6-P).
 Because FDG-6-P is not a substrate for further glycolytic pathways and has a low membrane permeability, the tracer becomes entrapped within the tissues in proportion to the rate of glucose utilization of that tissue. Courtesy of Dr Mark Madsen

Patient is positioned on imaging system.
CT transmission acquired 1st, then PET emission.
Patient is released.

¹⁸F FDG Oncologic Studies

- Patient is administered ~ 555 Mbq of F-18 FDG in a quiet, low light room.
- Patient remains at rest for 30-90 minutes prior to PET study.
 - No walking or other muscular activity
- Patient voids prior to imaging

Patient Dose Constant

- Unshielded ¹⁸F source constant is 0.143 μSv m²/MBq h
- Self absorption when distributed in patient.
- Wide variation in measured values reported in published reports.
- Task Group 108 recommends using 0.092 μ Sv m²/MBq h

Patient as a source of radioactivity

- The patient associated dose rate depends on:
 - Number of patients
 - 50 patients/week
 - Administered activity
 - 370 740 MBq
 - Procedure time
 - Uptake time: 1hour
 - Scanning time: 0.5 hour

P values based on NRC 10CFR20.1201 & 10CFR20.1301

Occupational:1000 μSv/weekALARA (typical):100 μSv/weekPublic:20 μSv/week

Patient Voiding

- Patients typically eliminate at least 15% of the remaining activity from their bladder when they void after the uptake period.
- Note: A bathroom should be available within the immediate PET facility. Problems are often encountered when a radioactive PET patient walks through a nuclear medicine clinic.

Shielding Transmission Factors

- Shielding information is available in the scientific literature, but ...
 - Variability among authors
 - Insufficient methodological information
- Task Group 108 relied on the Monte Carlo calculations of Doug Simpkin.
 - Mathematical model is known
 - All calculations were performed consistently

Lead Transmission Factors

Courtesy of Dr Mark Madsen

21

What is different when you have PET/CT in your facility

- 511 keV energy
 - Increases exposure rate from doses and patients.
 - Greatly increases thickness of required shielding.
- Requirements for patient handling during injection and uptake phase.
- Combined modality scanners (PET/CT) require consideration of both gamma-ray and x-ray hazard.

AAPM Annual Meeting, 2006

A Revealing Comparison of Lead Requirements: X-Ray vs PET

#HVL's	Lead Thickness mm (in		
	X-ray ¹ (average primary for rad room)	PET ²	Even a single half- value laver
1	0.044 (< 1/16)	5.3 (1/4)	for PET is
2	0.103 (< 1/16)	9.9 (7/16)	an
4	0.278 (< 1/16)	19.0 (3/4)	expensive
8	0.718 (< 1/16)	32.5 (1 5/16)	proposition!
10	1.366 (< 1/16)	46.0 (1 13/16)	

1. NCRP 147: Structural Shielding Design for Medical X-Ray Imaging Facilities 2. Simpkin, 2004, developed for AAPM Task Group on PET Facility Shielding

AAPM Annual Meeting, 2006

N: Maximum Workload Estimation

PET Facility Throughput Example:

1 Hour Uptake, 30 Minute Scan

Examples of Shadow Shields

AAPM Annual Meeting, 2006

Magnitude of TechnologistExposureConsistent with conventional
practice, most of technologist

Consistent with conventional nuclear medicine practice, most of technologist dose comes from positioning, transport, and injection.

Technologist Doses

More on Technologist Exposure

1) It is often seen that the technologist dose per mBq handled drops as a function of experience in the PET clinic.

A 2004 update to the previous UTSW data for the same two technologists as shown on preceding slide showed a normalized WB dose of $0.011 \,\mu$ Sv/MBq (0.041 mrem/mCi), down by 40% since 2002.

2) <u>Assuming</u> an average dose of <u>0.018 μ Sv/MBq</u> injected, <u>8</u> <u>pt/day</u> and <u>370 MBq (10 mCi) injected/pt</u>, this would yield a yearly dose of <u>13.3 mSv (1330 mrem)</u>, within regulation but above usual ALARA investigational limits. <u>Over nine months</u>, <u>it would be 10.4 mSv (1040 mrem)</u>, well above the declared pregnancy limit.

AAPM Annual Meeting, 2006

PET/CT in HKU

Method of radiation protection in PET/CT HKU

- Primary barrier design
- Lead sheet, lead apron, lead glass and lead door
- Radiation controlled area
- Source delivery route
- L-block for source preparation.
- Syringe shield and lead box for injection.

Method of radiation protection in PET/CT HKU

- Remote controlled radiation monitoring
- Personal monitoring
- Radiation warning sign
- Decontamination kit.
- Decontamination shower

Method of radiation protection in PET/CT HKU

- Minimizing radiation risk in working procedure
- Minimizing time with radioactive patient (Pre-injection briefing, intercom, CCTV etc)
- Minimizing positioning time.
- Follow local radiation protection rules

Delivery route and Patient flow

Control access in Radiation controlled area

36
Radiation monitoring

• Geiger counters installed in preparation room, corridor, waiting area and patient toilet.

Radiation monitoring

Computer display of Geiger counter measurement

New radiopharmaceutical temporary storage

2 cm Pb equivalent

21/09/2007

Storage for radioactive waste

Storage for decayed radioactive waste

21/09/2007

Hot lab: Dose assay and preparation area

Tungsten syringe shield

Radiation monitor for contamination check

Shower room for decontamination

Lead door for PET/CT

Patient monitoring through CCTV

Preparation rooms ROOM 2 ROOM 10:10:58 Waiting area

Patient monitoring through CCTV

Inter-com at control room

Inter com at uptake room

Nurse call at uptake room

Lead apron in PET/CT

• Useful for some paediatric patients under CT but not PET

21/09/2007

2

To minimize the risk of spill by using SAFSITE® Needle-free system

Local licensing requirement

Design criteria

- < 1 μ Sv/h at public area (uncontrolled area)
- < 3 μSv/h at radiation controlled area
 Remark: Workload, Use factor and Occupancy factor would also be considered.

PET/CT center at HKU

The site of PET/CT center at HKU

Opening for cable trunking

Opening at the source preparation room to the MRI unit at the upper floor

Corridor of PET/CT center

21/09/2007

Lead lining for air duct and trunking

Confirm the transmission factor of concrete wall and ceiling by using radioactive source

Lead-lined walls PET/CT room

Radiation measurement for concrete wall at reception

Dose comparison with other radiation workers

http://www.info.gov.hk/dh-rhu/Report2006e.pdf

The Distribution of Whole Body Dosimeter Users by Job Categories, 2006

The Average Annual Occupational Whole Body Dose by Job Categories, 2006

The Distribution of Whole Body Dose by Gender, 2006

	x<=0.17 mSv	0.17 <x<=0.75< th=""><th>0.75<x<=1.5< th=""><th>1.5<x<=3.0< th=""><th>3.0<x<=6.0< th=""><th>6.0<x<=10< th=""><th>10<x< th=""></x<></th></x<=10<></th></x<=6.0<></th></x<=3.0<></th></x<=1.5<></th></x<=0.75<>	0.75 <x<=1.5< th=""><th>1.5<x<=3.0< th=""><th>3.0<x<=6.0< th=""><th>6.0<x<=10< th=""><th>10<x< th=""></x<></th></x<=10<></th></x<=6.0<></th></x<=3.0<></th></x<=1.5<>	1.5 <x<=3.0< th=""><th>3.0<x<=6.0< th=""><th>6.0<x<=10< th=""><th>10<x< th=""></x<></th></x<=10<></th></x<=6.0<></th></x<=3.0<>	3.0 <x<=6.0< th=""><th>6.0<x<=10< th=""><th>10<x< th=""></x<></th></x<=10<></th></x<=6.0<>	6.0 <x<=10< th=""><th>10<x< th=""></x<></th></x<=10<>	10 <x< th=""></x<>
Male	3589	394	64	23	17	1	0
Female	3258	359	36	10	6	0	0
Total	6847	753	100	33	23	1	0

21/09/2007 Courtesy of Radiation Health Unit/DH/HKSAR 73

Dose distribution by job types

	x≤0.17 mSv	$0.17 < x \le 0.75$	$0.75 < x \le 1.5$	$1.5 < x \le 3.0$	$3.0 < x \le 6$	$6 < x \le 10$	10 <x< th=""></x<>
Consultant	52	6	4	0	0	0	0
Delivery	11	0	0	1	1	0	0
Dentist	354	23	2	0	1	0	0
Dental assistant	310	14	0	0	0	0	0
Industrial radiographer	27	18	2	2	1	0	0
Medical officer	755	106	14	6	2	0	0

21/09/2007 Courtesy of Radiation Health Unit/DH/HKSAR 74

Dose distribution by job types

	x≤0.17 mSv	$0.17 < x \le 0.75$	$0.75 < x \le 1.5$	$1.5 < x \le 3.0$	$3.0 < x \le 6$	6 <x 10<="" th="" ≤=""><th>10<x< th=""></x<></th></x>	10 <x< th=""></x<>
Medical Technologist	35	1	2	0	1	0	0
Nurse	950	135	14	5	1	0	0
Physicist	37	7	7	1	0	0	0
Diagnostic radiographer	1055	132	18	5	13	1	0
Therapeutic radiographer	92	20	5	0	0	0	0
Radiologist	49	6	1	0	0	0	0

21/09/2007 Courtesy of Radiation Health Unit/DH/HKSAR 75

Personal radiation monitors record at PET/CT center / HKU

Dose (µSv)	Rad1	Rad2	Rad 3	Nurse 1	Nurse 2	Nurse 3	Nurse 4	Nurse 5
June07	117	159	170	12	63	17	45	36
July07	114	156	118	14	25	12	44	61
Aug07	129	190	195	33	38	21	41	45

^{21/09/2007} Courtesy of staff from PET/CT HKU

Summary on occupational exposure PET/CT HKU

	Average monthly occupational exposure (µSv)	Projected annual occupational exposure (µSv)	Remark
Doctor	0	0	Doctors not involved in dose injection and scanning.
Nurse	34	408	1 out of 5 nurses on rotation basis
Radiographer	150	1800	3 radiographers worked on full time basis

21/09/2007 Courtesy of staff from PET/CT HKU

Summary on occupational exposure PET/CT HKU

	Projected annual occupational exposure (µSv)	Radiation risk to the staff	Remark
Nurse	408	2.3× 10 ⁻⁵	1 out of 5 nurses on rotation basis
Radiographer	1800	1.0× 10-4	3 radiographers worked on full time basis

Reference in ICRP 1991: Total risk of cancer and hereditary effects for work force = 5.6% Sv⁻¹

21/09/2007 Courtesy of staff from PET/CT HKU

Typical risks from well known activities

Activity	Risk of death per year
Travelling 300 miles by car	10-5
Work accidents	2×10^{-5}
Home accidents	10-4
Smoking 10 cigarettes a day	1.5×10^{-4}
Coal mining	1.5× 10-4
Deep sea fishing	2× 10 ⁻³

Reference from Dendy, p297 Physics for Diagnostic Radiology 21/09/2007

Thank you.

21/09/2007